Time-lapse film of the infection of clover root hairs by rhizobia. Note that the root hair is curled, one of the first visible steps of the compatible nodulation reaction. The arrows point to the end of the growing infection thread during the infection process. The tubular infection thread is the means by which the rhizobia gain entry into the root. Once the thread exits the root hair, it ramifies into the root cortex, finally ending at a cortical cell that will become infected. Time lapse film kindly provided by Drs. S. Higashi and M. Abe, Kagoshima University, Japan.

Recent Publications

Three most recent:

Hossain MS, Kawakatsu T, Kim KD, Zhang N, Nguyen CT, Khan SM, et al. Divergent cytosine DNA methylation patterns in single-cell, soybean root hairs. New Phytol. 2017; n/a-n/a. doi:10.1111/nph.14421

Cao Y, Halane MK, Gassmann W, Stacey G. The Role of Plant Innate Immunity in the Legume-Rhizobium Symbiosis. Annu Rev Plant Biol. 2017; doi:10.1146/annurev-arplant-042916-041030

Tóth, Katalin and Gary Stacey (2015) Does plant immunity have a central role in the legume-rhizobium symbiosis? Front. Plant Sci., 02 June 2015

More publications...

This project uses functional genomics to investigate the impact of biotic and abiotic stress on legume root hairs, a single cell model for systems biology. Our vision is to utilize the soybean root hair system to explore, at a systems level, the biology of a single, differentiated plant cell type.
Work funded by the National Science Foundation (NSF) focuses on understanding the molecular processes involved in legume root hair infection by nitrogen-fixing rhizobia. This infection initiates the symbiosis between this bacterium and its host that will result in the de novo formation of a novel organ, the nodule. It is within the nodule that the bacterium fixes nitrogen providing its host plant an advantage in environments where this element is limiting. The establishment of the symbiosis involves a complex interplay between host and symbiont, which is orchestrated by the exchange of diffusible signal molecules.
Work funded by the Department of Energy, Office of Science (Office of Biological and Environmental Research) will focus on defining the transcriptional, metabolomic and proteomic response of the soybean root hair cell to variations in temperature and water availability. These data will allow the development of computational models to examine regulatory networks that function at a single cell level to control the response to environmental change. The data obtained should provide a better understanding of the impacts of climate change (heat and water limitation) on plant root physiology.


The 4th Biennial Joint Symposium between GNU and MU

MU plant sciences researchers hosted the 4th joint symposium this week (May 6-7) between faculty from Gyeongsang National University, Jinju, Korea. This symposium is a biennial exchange between MU and GNU. GNU (http://eng.gnu.ac.kr/main/) is one of Korea's strongest universities in plant science research.


SoyKB and iPlant streamline complex bioinformatics analysis


Original Story Link

Even though next-generation sequencing (NGS) — with millions or billions of DNA nucleotides sequenced in parallel — is much less costly compared to first-generation sequencing, it still remains too expensive for many labs. NGS platform start-up costs can easily surpass hundreds of thousands of dollars, and individual sequencing reactions can cost thousands per genome.

Professional Development Teacher Workshop, 3/8/2014

 415 Tucker Hall and Townsend Hall

Saturday, March 8, 2014

University of Missouri


Go to top